To determine weight at your shaft length, multiply your actual shaft length by the grains-per-inch

320 0.320 FMJ 6MM 10.6
280 0.280 FMJ INJEX 12.0

To determine final calculated weight. For example, with a 60 lb peak bow with a 6" brace height, calculated bow weight will be 60+5 for a calculated 65 lb bow weight.

For compounds the "standard setup" includes use of a release aid and a brace height greater than 8 1/2". For the standard setup, use the chart in this section. For advanced setup, use chart in Section 2C.

If your arrow shaft is over 1/2" inch more than the recommended length, you may need to increase the spine size.

Easton recommends the use of a dedicated bow scale or the assistance of a qualified pro

The Shaft Size Listing below each group letter represents your suggested arrow shaft size.

Easton recommends the use of a qualified pro shop to assist in correct arrow shaft selection.

Using the charts–Compound Bow

1. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

2. Determine actual peak bow weight and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8 1/2”.

5. Spine dimensions (suggested)

Using the charts–Recurve or Longbow (finger release)

It is critical that you choose the correct spine size when determining the weight column to be used on the chart. Actual peak bow weight should be measured at your draw weight.

Easton recommends the use of a dedicated bow scale or the assistance of a qualified pro shop for this purpose. Use the Recurve or Longbow ACTUAL weight chart on the right side of the chart to select the column corresponding to your draw type and weight. Follow the column downwards to your bow weight and then follow the row to the left to find your suggested arrow group.

The Shaft Size Listing below each group letter represents your suggested arrow shaft size. Note that providing incorrect weight or length information, or incorrect variable size.

Carbon Shafts

Easton's selection charts are regularly updated to reflect the latest in bow performance. For 2016, we have made a few adjustments to certain size recommendations. All changes are designed to improve bow efficiencies and allow even more aggressive cam profile developments. Please read over the chart and all guidelines before selecting shafts based on prior experience.

Using the charts–Compound Bow

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

Using the charts–Recurve or Longbow (finger release)

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

6. Spine listing below each group letter represents your suggested arrow shaft size.

Easton recommends the use of a qualified pro shop to assist in correct arrow shaft selection.

ABOUT THE SELECTION CHARTS

Using the charts–Compound Bow

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

Using the charts–Recurve or Longbow (finger release)

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

6. Spine listing below each group letter represents your suggested arrow shaft size.

Easton recommends the use of a qualified pro shop to assist in correct arrow shaft selection.

CARBON SHAFT WEIGHTS (CARBWT)

Using the charts–Compound Bow

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

Using the charts–Recurve or Longbow (finger release)

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

6. Spine listing below each group letter represents your suggested arrow shaft size.

Easton recommends the use of a qualified pro shop to assist in correct arrow shaft selection.

HUNTING ARROW SIZE SELECTION CHARTS

about the selection charts

Using the charts–Compound Bow

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)

Using the charts–Recurve or Longbow (finger release)

1. Determine your correct arrow length–hunting or target per diagram and instructions below.

2. Determine correct peak bow weight (not holding weight) and draw length with the assistance of a qualified archery pro shop.

3. Determine the ATVA (Archery Trade Association) rating velocity of your bow.

4. Factor variables to the “standard compound setup” to determine calculated bow weight. For the standard setup “includes use of release aid and a brace height greater than 8.5”.

5. Spine dimensions (suggested)
2016 Hunting Shaft Models

<table>
<thead>
<tr>
<th>ALLOY/CARBON</th>
<th>Material/Construction</th>
<th>Inserts</th>
<th>Points</th>
<th>Neck System</th>
<th>Neck Type</th>
<th>Weight Tolerance1</th>
<th>Straightness2</th>
<th>Color/Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C INJECTION™</td>
<td>High-strength carbon fiber 7075-T9 alloy core tube</td>
<td>Deep Six</td>
<td>Deep Pro</td>
<td>Internal-fit</td>
<td>Deep Six Shell</td>
<td>±1 grains</td>
<td>±.003”</td>
<td>Black, Micro-smooth</td>
<td>450, 480, 333</td>
</tr>
</tbody>
</table>

CARBON CORE

<table>
<thead>
<tr>
<th>Material/Construction</th>
<th>Inserts</th>
<th>Points</th>
<th>Neck System</th>
<th>Neck Type</th>
<th>Weight Tolerance1</th>
<th>Straightness2</th>
<th>Color/Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 HUNTING SHAFT MODELS</td>
<td>CARBON INJEX™</td>
<td>Precision 100% carbon tube bonded to a carbon core</td>
<td>Deep Six</td>
<td>Deep Pro</td>
<td>Internal-fit</td>
<td>Deep Six Shell</td>
<td>±1 grains</td>
<td>±.003”</td>
</tr>
<tr>
<td>BLOODLINE™</td>
<td>High-strength carbon fiber 7075-T9 alloy core tube</td>
<td>Alum. Nock</td>
<td>HP Insert</td>
<td>Internal-fit</td>
<td>HP Insert</td>
<td>±1 grains</td>
<td>±.003”</td>
<td>Black, Cleared Pattern</td>
</tr>
<tr>
<td>CARBON MATERIAL</td>
<td>Super Lite Carbon multi-layer wrapped fibers</td>
<td>CB Insert</td>
<td>HP Insert</td>
<td>Internal-fit</td>
<td>CB Insert</td>
<td>±1 grains</td>
<td>±.003”</td>
<td>Two-Tone Sanded Silver</td>
</tr>
</tbody>
</table>

MATERIALS/CONSTRUCTION

- SuperLite Carbon multi-layer wrapped fibers
- UltraLite carbon composite fibers
- High-strength carbon-alloy 7075-T9 96,000 RPS Insert
- Precision 7075 alloy jacket bonded to a carbon core
- Hardened stainless steel
- Bonded to a precision carbon core
- Construction fibers
- Composite fibers

Nocks System

- HP Insert
- RPS Insert
- CB Insert

Nock Type

- HP or RPS
- CB or RPS

Weight

- ±1 grains
- ±.003”

ALLOY SHAFT AND COMPONENT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Size</th>
<th>£75/£175</th>
<th>£200</th>
<th>£250</th>
<th>£300</th>
<th>£340</th>
<th>£380</th>
<th>£400</th>
<th>£425</th>
<th>£450</th>
<th>£500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1816</td>
<td>9.3</td>
<td>0.796</td>
<td>30</td>
<td>8</td>
<td>4</td>
<td>74</td>
<td>32</td>
<td>16</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>1916</td>
<td>9.3</td>
<td>0.834</td>
<td>32</td>
<td>8</td>
<td>5</td>
<td>76</td>
<td>34</td>
<td>18</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>2016</td>
<td>9.3</td>
<td>0.861</td>
<td>32</td>
<td>8</td>
<td>5</td>
<td>78</td>
<td>36</td>
<td>18</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>2116</td>
<td>9.3</td>
<td>0.903</td>
<td>32</td>
<td>8</td>
<td>6</td>
<td>80</td>
<td>38</td>
<td>18</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>2216</td>
<td>9.3</td>
<td>0.945</td>
<td>32</td>
<td>8</td>
<td>6</td>
<td>82</td>
<td>40</td>
<td>18</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>2315</td>
<td>(340)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2413</td>
<td>10.4</td>
<td>0.365</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

ALLOY

<table>
<thead>
<tr>
<th>Compound</th>
<th>Strength1</th>
<th>Tolerance2</th>
<th>Color</th>
<th>Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 HUNTING SHAFT MODELS</td>
<td>CARBON</td>
<td>11/16”</td>
<td>±.005”</td>
<td>Black, Micro-smooth</td>
<td>500, 400, 340, 300</td>
</tr>
<tr>
<td>2016 HUNTING SHAFT MODELS</td>
<td>LEGACY™</td>
<td>11/16”</td>
<td>±.005”</td>
<td>Black, Micro-smooth</td>
<td>480, 400, 340, 300</td>
</tr>
<tr>
<td>2016 HUNTING SHAFT MODELS</td>
<td>7075-T9 95,000 RPS Insert</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

CARBON INJECTION™

- Carbon materials
- Construction fibers
- Nock system
- Nock type

CROSSTOWN

<table>
<thead>
<tr>
<th>CARBON</th>
<th>Materials/Construction</th>
<th>Inserts</th>
<th>Points</th>
<th>Neck System</th>
<th>Neck Type</th>
<th>Weight Tolerance1</th>
<th>Straightness2</th>
<th>Color/Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNX™</td>
<td>CROSSOWN</td>
<td>Precision 100% carbon tube bonded to a carbon core</td>
<td>HP Bolt</td>
<td>HP Insert</td>
<td>Internal-fit</td>
<td>Radiation Hardness</td>
<td>±2 grains</td>
<td>±.003”</td>
<td>Black, Summer Pattern</td>
</tr>
</tbody>
</table>

BOW TIE BOLT™

<table>
<thead>
<tr>
<th>CARBON</th>
<th>Materials/Construction</th>
<th>Inserts</th>
<th>Points</th>
<th>Neck System</th>
<th>Neck Type</th>
<th>Weight Tolerance1</th>
<th>Straightness2</th>
<th>Color/Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNX™</td>
<td>CROSSOWN</td>
<td>Precision 100% carbon tube bonded to a carbon core</td>
<td>HP Bolt</td>
<td>HP Insert</td>
<td>Internal-fit</td>
<td>Radiation Hardness</td>
<td>±2 grains</td>
<td>±.003”</td>
<td>Detailed Graphic Overlay</td>
</tr>
</tbody>
</table>

ALLOY

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Strength1</th>
<th>Tolerance2</th>
<th>Color</th>
<th>Finish</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNUM EXT™</td>
<td>10.7</td>
<td>0.361</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
</tbody>
</table>

WARNING!

FOLLOW THESE INSTRUCTIONS TO AVOID PERSONAL INJURY. SEE WARNINGS AND USE @ www.bsafe.ws or 877-INFO-ETP.

- Shaft weight
- Core/Shell
- Spine
- Conventional
- UNI
- Super UNI
- Broadhead Adapter Rings

ARROW BREAKAGE

- When testing arrows, always wear protective gear and follow the warning instructions below, to determine if your arrow has been damaged in any way.

WARNING! NEVER SHOOT AN ARROW WITH A DAMAGED NOCK.

DISCARD THE ARROW.

- Any arrow can become damaged. A damaged arrow could break upon release and injure you or a bystander. Damage to an arrow shaft, or cracks, splits, dents, or other marks that could indicate the shaft has been damaged. If your arrow is crested, inspect for damage on the...